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Abstract
We prove that in dimension 1 the jumps and singularities of an unknown
potential appearing in the Schrödinger equation can be recovered using the Born
approximation. The result is based on an accurate determination of the first
nonlinear term of the Born series. We shall also work in wider function space
than the previous publications on this topic. Numerical examples illustrate the
feasibility of this technique.

PACS numbers: 02.30.Zz, 03.65.Nk, 02.30.Nw

1. Introduction

Let us consider the one-dimensional Schrödinger operator

H := − d2

dx2
+ q(x) (1)

with the real-valued potential q(x) belonging to the weighted space L1
σ (R) defined by the

norm

‖q‖L1
σ (R) =

∫ ∞

−∞
(1 + |x|)σ |q(x)| dx,

where σ � 0 will be specified later. For such potential the operator H is known to be self-
adjoint in L2(R) (at least in terms of quadratic forms) with domain D(H) in Sobolev space
W 1

2 (R). If q(x) ∈ L1
σ (R) with σ � 1, then the spectrum of H can be described precisely

(see for example [1]). Namely, it consists of an absolutely continuous spectrum, filling out
the non-negative real axis [0,∞) and a possible finite negative discrete spectrum of finite
multiplicity

−λ2
n < −λ2

n−1 < · · · < −λ2
1 (2)

with corresponding eigenfunctions from L2(R).
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In scattering theory one considers the generalized eigenfunctions (which correspond to
continuous spectrum) that are the solutions of

Hu = k2u, u = u0 + usc, u0 = eikx .

They are the responses to an incoming wave u0. Observe that the outgoing wave usc

satisfies the equation

(−� − k2)usc = −qu0 − qusc.

Applying the outgoing resolvent, i.e. the integral operator
(− d2

dx2 − k2 − i0
)−1

, we obtain
the so-called Lippmann–Schwinger integral equation

u(x, k) = eikx +
1

2i|k|
∫ ∞

−∞
ei|k||x−y|q(y)u(y, k) dy, (3)

where k �= 0. Note that for k = 0 we will have the equation

u(x) = 1 +
1

2

∫ ∞

−∞
|x − y|q(y)u(y) dy.

It is not so difficult to check that for any fixed k > 0, the solutions u(x, k) of (3) admit
asymptotically the representations

u(x, k) = eikxa(k) + o(1), x → +∞,

u(x, k) = eikx + b(k) e−ikx + o(1), x → −∞,

where

a(k) = 1 +
1

2ik

∫ ∞

−∞
e−ikyq(y)u(y, k) dy,

b(k) = 1

2ik

∫ ∞

−∞
eikyq(y)u(y, k) dy.

The inverse scattering problem for the Hamiltonian (1) is formulated as follows: to recover
the potential q(x) given scattering data, i.e. the coefficients a(k) and b(k) and the negative
discrete spectrum (2), if it exists.

For the potentials from the weighted space L1
σ (R) with σ � 1, this problem was solved

in the frame of the Gelfand–Levitan–Marchenko approach, see [2–7] and [1]. These studies
provide the uniqueness theorems for direct and inverse problems as well as transformation
formulae and exact formula for recovering the potential q(x) in one form or another. However,
the entire spectrum must be known. The reflection coefficient (in our case b(k)) must be known
for all k �= 0 and also in the case of discrete spectrum normalizing constants, and this discrete
spectrum is required. There is a large literature for potentials that are not in the standard class
L1

1(R). We refer to the book of Chadan and Sabatier [7], see chapter XVII, sections 4 and 5,
and see also the references therein.

If the potential q(x) belongs to L1
σ (R), with 0 � σ < 1, then we cannot describe the

spectrum of the Hamiltonian as above. We may only say (see [8]) that the essential spectrum
of H is [0,∞). But if in addition we assume that the potential has the special behaviour

|q(x)| � C|x|−µ, |x| > R,

where R is large enough and µ > 1, then the spectrum consists of a continuous spectrum filling
out the positive real axis and a possible negative discrete spectrum of finite multiplicity with
zero as the only possible accumulation point, see [9]. Here and in the following, C > 0 shall
designate a generic constant that may change from one step to another. For potentials from
L1

σ (R) with 0 � σ < 1, the uniqueness theorem in the one-dimensional inverse scattering
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problem does no longer hold, see [10]. Let us note here that there are some interesting
examples of potentials with Dirac delta function for which the uniqueness theorem also does
not hold, see [11–13]. For our considerations we do not need the uniqueness theorem for the
inverse scattering problem.

In the present paper we will consider the potential q(x) from L1(R) and investigate an
approximate method to recover partial information about the potential, namely the jumps and
discontinuities of it. This method works if we know only one of the data coefficients, b(k).
Furthermore, it is not required to be known for all k ∈ R, but for all k which are as large as
we want in absolute value. Actually, in the frame of this method the unknown potential, up to
a C∞ function, is simply the inverse Fourier transform of the data b(k). It is well known that
if the potential is small (in the sense of having small norm), then this approximation is very
good. But even if the potential is not small, we can obtain very essential information about it
from this approximation. In the present paper we improve some of the results obtained in the
paper [14–16].

This paper is organized as follows. In section 2 we give the incident direction u0 = eikx full
treatment in terms of defining the Born approximation and then studying the first nonlinear term
of the Born series. We give estimates for the remaining terms in this series so concluding the
recovery of jumps and singularities of the unknown potential. Section 3 lists the corresponding
results without proofs for the second incident direction u0 = e−ikx . We finish the paper by
giving a selection of numerical examples illustrating the usefulness of the method.

2. The first incident direction

Let u0(x, k) = eikx . Defining

u(x, k) = u(x,−k) (4)

for k < 0, we can consider equation (3) for all k �= 0 in the form

u(x, k) = e ikx +
1

2ik

∫ ∞

−∞
eik|x−y|q(y)u(y, k) dy. (5)

Lemma 1. Suppose that the potential q(x) belongs to L1(R). Then for any |k| > ‖q‖1/2,
there exist solutions of the integral equation (5) satisfying the estimate

|u(x, k)| � 2|k|
2|k| − ‖q‖1

uniformly in x ∈ R.

Proof. The Lippmann–Schwinger equation (5) is a Fredholm integral equation of the second
kind whose solution is found via Neumann series

u(x, k) =
∞∑

j=0

uj (x, k), (6)

where

uj (x, k) = 1

2ik

∫ ∞

−∞
eik|x−y|q(y)uj−1(y, k) dy, j = 1, 2, . . .

u0(x, k) = eikx .

It follows by induction that

|uj (x, k)| �
(‖q‖1

2|k|
)j

, j = 1, 2, . . . .
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Hence, series (6) converges if

|k| >
‖q‖1

2
.

For such k, there holds

|u(x, k)| �
∞∑

j=0

(‖q‖1

2|k|
)j

= 1

1 − ‖q‖1

2|k|
= 2|k|

2|k| − ‖q‖1

proving the lemma. �

Corollary 2. The remaining terms of series (6) satisfy the estimate
∞∑

j=m

|uj (x, k)| � cm

|k|m , m = 0, 1, . . .

for |k| � ‖q‖1 with cm = 2
( ‖q‖1

2

)m
.

Proof. For |k| � ‖q‖1, we have the estimates
∞∑

j=m

|uj (x, k)| �
∞∑

j=m

(‖q‖1

2|k|
)j

=
(‖q‖1

2|k|
)m 1

1 − ‖q‖1

2|k|
� 2‖q‖m

1

(2|k|)m = cm

|k|m ,

for m = 0, 1, . . . . �

Since

u(x, k) ≈ eikx, k → ∞,

we have the asymptotics

a(k) ≈ 1 +
1

2ik

∫ ∞

−∞
q(y) dy ≈ 1, k → ∞,

b(k) ≈ 1

2ik

∫ ∞

−∞
ei2kyq(y) dy, k → ∞.

That is why we choose b(k) as our data in the inverse problem which is to recover jumps and
singularities of q. For |k| < ‖q‖1 we set b(k) = 0. An easy computation using (4) shows that
b(k) = b(−k).

We observe that for large k,

b(k) ≈
√

2π

2ik
(Fq)(2k),

where F designates the Fourier transform defined by

(Ff )(k) = 1√
2π

∫ ∞

−∞
eikyf (y) dy.

Correspondingly, the inverse Fourier transform F−1 is defined by

(F−1f )(x) = 1√
2π

∫ ∞

−∞
e−ikxf (k) dk.

This motivates the following.

Definition 3. The inverse scattering Born approximation qB(x) of the potential q(x) is defined
by

qB(x) = F−1

(
ikb(k/2)√

2π

)
= i

2π

∫ ∞

−∞
kb(k/2) e−ikx dk. (7)
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Remark 4. Since

qB(x) = i

2π
(f (x) − f (x)),

where

f (x) =
∫ ∞

0
kb(k/2) e−ikx dk,

we note that qB(x) is real valued.

Lemma 5. Under the same assumptions for q(x) as in lemma 1, the Born approximation (7)
is of the form

qB = q + q1 + q̃ + qrest,

where

q1 = F−1

(
1√
2π

∫ ∞

−∞
ei k

2 yq(y)u1

(
y,

k

2

)
dy

)
,

q̃ = F−1

(
[χ(k/2) − 1]

1√
2π

∫ ∞

−∞
ei k

2 yq(y)

(
u0

(
y,

k

2

)
+ u1

(
y,

k

2

))
dy

)
,

qrest = F−1


χ(k/2)

1√
2π

∫ ∞

−∞
ei k

2 yq(y)

∞∑
j=2

uj

(
y,

k

2

)
dy


 ,

with

χ(k) =
{

0, |k| < ‖q‖1

1, |k| � ‖q‖1.

Proof. Set

b(k) = χ(k)
1

2ik

∫ ∞

−∞
eikyq(y)u(y, k) dy

for all k ∈ R. Then

qB = F−1

(
[1 + (χ(k/2) − 1)]

1√
2π

∫ ∞

−∞
ei k

2 yq(y)u

(
y,

k

2

)
dy

)

= F−1

(
1√
2π

∫ ∞

−∞
ei k

2 yq(y)u0

(
y,

k

2

)
dy

)
+ F−1

(
1√
2π

∫ ∞

−∞
ei k

2 yq(y)u1

(
y,

k

2

)
dy

)

+ F−1

(
[χ(k/2) − 1]

1√
2π

∫ ∞

−∞
ei k

2 yq(y)

(
u0

(
y,

k

2

)
+ u1

(
y,

k

2

))
dy

)

+ F−1


χ(k/2)

1√
2π

∫ ∞

−∞
ei k

2 yq(y)

∞∑
j=2

uj

(
y,

k

2

)
dy




= q + q1 + q̃ + qrest. �

Since F and F−1 map compactly supported distributions to C∞ functions, we have
q̃ ∈ C∞(R) and so

qB − q − q1 − qrest ∈ C∞(R). (8)

Our aim is to conclude that the difference qB −q is (at least) continuous. To that end it remains
to estimate q1 and qrest. We start with q1 for which we can even find an explicit formula.
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Lemma 6. Under the same assumptions for q(x) as in lemma 1, the first nonlinear term of
the Born expansion admits the representation

q1(x) = 1

2

(∫ ∞

−∞
q(y) dy

)2

−
(∫ x

−∞
q(y) dy

)2

.

Proof. The proof is a straightforward computation starting from the definition

q1(x) = F−1

(
1√
2π

∫ ∞

−∞
ei k

2 yq(y)u1

(
y,

k

2

)
dy

)

= F−1

(
1√
2π

∫ ∞

−∞
ei k

2 yq(y)
1

ik

∫ ∞

−∞
eik|y−z|/2q(z)u0

(
z,

k

2

)
dz dy

)

= 1

2π i

∫ ∞

−∞
q(y) dy

∫ ∞

−∞
q(z) dz

∫ ∞

−∞
ei k

2 (|y−z|+z+y−2x) dk

k

= 1

π

∫ ∞

−∞
q(y) dy

∫ ∞

−∞
q(z) dz

∫ ∞

0

sin
(

k
2 (|y − z| + z + y − 2x)

)
k

dk.

Since ∫ ∞

0

sin(kβ)

k
dk = π

2
sgn β

and

|y − z| + z + y = 2 max(y, z),

we get

q1(x) = 1

2

∫ ∞

−∞
q(y)

∫ ∞

−∞
q(z) sgn(|y − z| + z + y − 2x) dy dz

= 1

2

∫ ∞

−∞
q(y)

∫ ∞

−∞
q(z) sgn(max(y, z) − x) dy dz.

Elementary considerations of the signum function above yield

q1(x) = 1

2

(∫ ∞

x

q(y) dy

)2

+
∫ x

−∞
q(y)

∫ ∞

x

q(z) dy dz − 1

2

(∫ x

−∞
q(y) dy

)2

or

q1(x) = 1

2

(∫ ∞

−∞
q(y) dy

)2

−
(∫ x

−∞
q(y) dy

)2

after completing the square. �

We conclude from lemma 6 that q1(x) is bounded and continuous. The same turns out to
be true for qrest(x).

Lemma 7. Under the same assumptions for q(x) as in lemma 1, the term qrest(x) in the Born
expansion is bounded and continuous.

Proof. We start with the elementary estimate∣∣∣∣∣∣
∫ ∞

−∞
ei k

2 yq(y)

∞∑
j=2

uj

(
y,

k

2

)
dy

∣∣∣∣∣∣ �
∫ ∞

−∞
|q(y)|

∞∑
j=2

∣∣∣∣uj

(
y,

k

2

)∣∣∣∣ dy � C‖q‖1

k2
,
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for |k| � 2‖q‖1. It follows that

|q̂rest(k)| � C

k2
, |k| � 2‖q‖1,

where the hat denotes the Fourier transform. Hence,

‖qrest‖2
Hs(R) =

∫ ∞

−∞
(1 + |k|2)s |q̂rest(k)|2 dk �

∫
|k|�2‖q‖1

C(1 + |k|2)s
|k|4 dk

� C

∫ ∞

2‖q‖1

1

|k|4−2s
dk < ∞

if and only if s < 3/2. Here, we have used the fact that

(1 + k2)s

(k2)s
=

(
1 +

1

k2

)s

�
(

1 +
1

k2
0

)s

, k � k0 > 0, s > 0,

i.e. (1 + k2)s � Ck2s , for k � k0 > 0, s > 0. So

qrest ∈ Hs(R),

for any s < 3/2. Since Hs(R) ⊂ C(R) ∩ L∞(R), s > 1/2, we can conclude that qrest is
bounded and continuous. �

Remark 8. The function qrest(x) is even in Cα(R), 0 < α < 1, but we do not need this
additional smoothness.

We thus have the following result.

Theorem 9. Suppose that the potential q(x) belongs to L1(R). Then the difference qB − q is
a continuous function, i.e. the jumps and singularities of q can be recovered from qB.

Proof. It follows from lemmas 6 and 7 that we can remove q1 and qrest from the smoothness
result (8). This establishes the theorem. �

Remark 10. In particular, we can recover from qB any unknown bounded interval on the line.

3. The second incident direction

In dimension 1 we can study all (both) possible incident directions. The second choice is
u0(x, k) = e−ikx . Now, we are led to the Lippmann–Schwinger equation

u(x, k) = e−ikx +
1

2ik

∫ ∞

−∞
eik|x−y|q(y)u(y, k) dy.

In this case the asymptotics become

u(x, k) = e−ikxa1(k) + o(1), x → −∞,

u(x, k) = e−ikx + b1(k) eikx + o(1), x → +∞,

where

a1(k) = 1 +
1

2ik

∫ ∞

−∞
eikyq(y)u(y, k) dy,

b1(k) = 1

2ik

∫ ∞

−∞
e−ikyq(y)u(y, k) dy.
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Hence, we define

q−
B (x) = F

(
ik√
2π

b1(k/2)

)
= i

2π

∫ ∞

−∞
kb1(k/2) eikx dk.

The Born series of q−
B (x) can be analysed as above to arrive at the conclusion of theorem 9.

Furthermore, the first nonlinear term becomes

q−
1 (x) = 1

2

(∫ ∞

−∞
q(y) dy

)2

−
(∫ ∞

x

q(y) dy

)2

.

It follows that the average of q1 terms assumes the beautiful symmetrical form

q−
1 (x) + q1(x)

2
=

∫ x

−∞
q(y) dy

∫ ∞

x

q(y) dy

so that, e.g.

lim
x→±∞

q−
1 (x) + q1(x)

2
= 0.

4. Numerical examples

In this section we give some examples of discontinuities of q and how they can be recovered
from qB. We assume that supp q ⊂ [0, 1].

As is already noted, for qB it remains to compute

f (x) =
∫ ∞

0
kb(k/2) e−ikx dk.

We do this using the Gauss–Laguerre quadrature rule of order l ∈ N,∫ ∞

0
e−kg(k) dk ≈

l∑
j=1

ωjg(kj ),

where the abscissas kj are the roots of the Laguerre polynomial Ll(x) and the weights ωj are
given by

ωj = 1

kjL
′
l(kj )2

, j = 1, 2, . . . , l.

The Laguerre polynomials are defined by

Lj(x) = ex

j !

dj

dxj
(xj e−x), j = 0, 1, . . . ,

but we compute them from the recurrence relation

L0(x) = 1, L1(x) = 1 − x,

(j + 1)Lj+1(x) = (2j + 1 − x)Lj (x) − jLj−1(x), j = 1, 2, . . . .

So

f (x) ≈
l∑

j=1

ωj ekj (1−ix)kjb(kj /2). (9)

For (9) we need to compute an approximation to our data b(k). For |k| � ‖q‖1, we use the
Simpson quadrature rule to get

b(k) = 1

2ik

∫ 1

0
e ikyq(y)u(y, k) dy ≈ 1

2ik

2n∑
j=0

wj e ikyj q(yj )u(yj , k), (10)
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Figure 1. Recovery of jump discontinuity of height 1.

where yj = j

2n
, j = 0, 1, 2, . . . , 2n, and

wj = 1

6n
×




1, j = 0, 2n

4, j = 1, 3, 5, . . . , 2n − 1
2, j = 2, 4, 6, . . . , 2n − 2.

Finally, given k ∈ R, for (10) we need the (approximate) solution u(yj , k) of

u(x, k) = eikx +
1

2ik

∫ 1

0
eik|x−y|q(y)u(y, k) dy (11)

at isolated points yj . An application of the Simpson rule gives

u(x, k) ≈ eikx +
1

2ik

2n∑
j=0

wj eik|x−yj |q(yj )u(yj , k).

Evaluating this at x = ys, s = 0, 1, 2, . . . , 2n, results in the (approximate) linear system

u(ys, k) ≈ e ikys +
1

2ik

2n∑
j=0

wj eik|ys−yj |q(yj )u(yj , k), s = 0, 1, 2, . . . , 2n.

From this system we find u(yj , k), j = 0, 1, 2, . . . , 2n, for |k| � ‖q‖1. The other incident
direction is treated in an analogous manner.

We remark that while the Gaussian quadrature is often more suitable for singular
integration, it loses its appeal when we need to have excessively many abscissas in the
Nyström method above. Furthermore, we ignore the possible singularities in (10) and (11),
as is justified in [17], by setting q(x) = 0 at the points of singularity. Fortunately, this
simplification will not deteriorate the resolution of the singularities of q. Recall also that the
Born approximation is better if q is small in norm.

Our basic example is the jump discontinuity in the form of the characteristic function of
an interval. The potential q(x) = χ(0,1)(x) is presented in figure 1 together with qB(x) (left),

q−
B (x) (middle) and qB(x)+q−

B (x)

2 (right). Figure 2 presents what in our minds is an excellent
recovery of the smaller jump q(x) = 0.1χ(0,1)(x). In figure 3 we consider the algebraic and
logarithmic singularities,

q(x) = χ(0,1)(x)

(
1√
x

− 1

)
and q(x) = χ(0,1)(x) log x,

respectively. For the latter three examples, it suffices to look at qB(x) only. We report without

details that q−
B (x) and qB(x)+q−

B (x)

2 give a comparable resolution of the jump and singularities in
these cases.
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Figure 2. Recovery of jump discontinuity of height 0.1.
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Figure 3. Recovery of algebraic and logarithmic singularities.

In all of the experiments we have used the values n = 128 and l = 32. We see that in all
the cases, the location and type of the singularity are recovered reasonably well, but the higher
jump remains rather inaccurate. Moreover, these experiments suggest that especially in the
search for ‘higher’ jumps, one should look at the average of qB terms in order to identify the
unknown interval. Luckily enough this does not become a problem as the computation of qB

is relatively simple (and fast) once the data are available.

References

[1] Deift P and Trubowitz E 1979 Commun. Pure Appl. Math. 32 121–251
[2] Agranovich Z S and Marchenko V A 1963 The Inverse Problems of Scattering Theory (New York: Gordon and

Breach)
[3] Faddeev L D 1959 Usp. Mat. Nauk 14 57–119
[4] Faddeev L D 1964 Tr. Mat. Inst. Steklov 73 314–36
[5] Marchenko V A 1977 Sturm-Liouville Operators and Their Applications (Russian) (Kiev: Naukova Dumka)
[6] Levitan B M 1984 Inverse Sturm-Liouville Problems (Russian) (Moscow: Nauka)
[7] Chadan K and Sabatier P C 1989 Inverse Problems in Quantum Scattering Theory (Berlin: Springer)



Recovery of jumps and singularities in dimension 1 4217

[8] Schechter M 1981 Operator Methods in Quantum Mechanics (New York: North-Holland)
[9] Yafaev D R 2002 Scattering and Inverse Scattering in Pure and Applied Science (Scattering vol 2) ed E R Pike

and P C Sabatier (London: Academic) p 1640
[10] Aktosun T and Newton R G 1985 Inverse Problems 1 291–300
[11] Aktosun T 1987 Inverse Problems 3 L1–L3
[12] Aktosun T 1987 Phys. Rev. Lett. 58 2159–61
[13] Aktosun T 1988 Inverse Problems 4 347–52
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